Building an AI system is a careful process of reverse-engineering human traits and capabilities in a machine, and using its computational prowess to surpass what we are capable of.
To understand How Artificial Intelligence actually works, one needs to deep dive into the various sub-domains of Artificial Intelligence and understand how those domains could be applied to the various fields of the industry. You can also take up an artificial intelligence course that will help you gain a comprehensive understanding.
- Machine Learning: ML teaches a machine how to make inferences and decisions based on past experience. It identifies patterns and analyses past data to infer the meaning of these data points to reach a possible conclusion without having to involve human experience. This automation to reach conclusions by evaluating data saves human time for businesses and helps them make a better decisions.
- Deep Learning: Deep Learning is an ML technique. It teaches a machine to process inputs through layers in order to classify, infer and predict the outcome.
- Neural Networks: Neural Networks work on similar principles to Human Neural cells. They are a series of algorithms that captures the relationship between various underlying variables and processes the data as a human brain does.
- Natural Language Processing: NLP is a science of reading, understanding, and interpreting a language by a machine. Once a machine understands what the user intends to communicate, it responds accordingly.
- Computer Vision: Computer vision algorithms try to understand an image by breaking down an image and studying different parts of the object. This helps the machine classify and learn from a set of images, to make a better output decision based on previous observations.
- Cognitive Computing: Cognitive computing algorithms try to mimic a human brain by analyzing text/speech/images/objects in a manner that a human does and tries to give the desired output.